

Klinik für Urologie

Environmental and Human Health Impact of Flexible Ureterorenoscopy – Analysis of intra-hospital Factors for improved Life Cycle Assessment

Marlene Thöne¹, Jan Lask², Jörg Hennenlotter¹, Arnulf Stenzl¹, Steffen Rausch¹

¹Klinik für Urologie, Universitätsklinik Tübingen ²Universität Hohenheim, Fachgebiet für Nachwachsende Rohstoffe in der Bioökonomie, Stuttgart

Background: Climate change is a global challenge and health systems are relevant contributors to CO₂ emissions. Therefore, concepts of *Planetary Health* have been implemented into urological practice. Earlier studies have specifically focused on Life Cycle Assessment (LCA) of reusable or single-use flexible ureterorenoscopes (fURS). The methodology used is highly data-dependent and knowledge on intra-hospital emissions is still limited. Here, we present a methodical approach for intra-institutional processes of LCA for fURS.

Methods: LCA was performed to assess the CO₂ equivalents of reusable fURS (use-phase, maintenance, disposal) to approximate the *Global Warming Potential (GWP)* per use. Associated *Human Health Impacts* were evaluated using the impact assessment method ReCiPe2016(H) and Disability-adjusted Life Years (DALYs) (FIGURE 1,2). Data were supplemented by systematic interviews of intra- and extra-clinical experts using likert-scaled questionnaires.

Results: Assuming 200 usages per fURS and maintenance after each 11th use, 7.3 kg CO₂-eq equal to 6,7E-06 DALYs resulted for one application of a fURS (FIGURE 3, TABLE 1). Most influential parameters were electricity required per refurbishment and per use (FIGURE 4 A-B). Qualitative assessment revealed a high relevance of clinical efficiency (5/5 "very high relevance") and results from clinical studies (4/5 "high relevance") for purchase decisions. Geographical criteria and trading conditions (0/5 "no relevance at all") were regarded as negligible while ecological criteria had medium relevance (3/5) in purchase decisions (TABLE 2).

Fig. 1: **Product System and System Boundary** for reusable fURS according to ISO 14040: Life cycle with In- and Output to demonstrate the substance flows and resulting environmental and health impact.

Fig. 2: Methods Life Cycle Assessment (LCA): Data collection, implementation of the data into software to calculate the Global Warming Potential (GWP) in kilogram CO_2 equivalents (kg CO_2 -eq) and the Human Health Impact in Disability-adjusted life years (DALYs). One DALY represents the loss of one year of full health (2).

Fig. 3 Resulting CO₂ equivalents for one application of a reusable fURS using either German electricity mix (Electricity – German market mix) or Renewable mix (used in Universitätsklinikum Tübingen (UKT))

Fig. 4A-B. Contributions to CO₂ footprint of one use of one reuseable fURS. using different energy mixes: (A) conventional electricity mix (market for electricity, medium voltage | electricity, medium voltage | Cutoff, U – DE) or (B) 100% Renewable energies (Renewable mix, used in UKT)

Criteria for purchase decisions for fURS (0=no relevance at all, 1=very low relevance, 2=low relevance, 3=medium relevance, 4=high relevance, 5=very high relevance)

Table2.Qualitativedata:subjective

Environment al impact (<i>one use)</i>	, 7.3 kg CO ₂ eq	1.29 kg CO ₂ eq per use/sterilization	one reusable fURS using conventional electricity mix (Germany) or renewable mix	costs clinical efficiency results from studies	5 5 4	purchase criteria for fURS. Data collected in controlling section
Human Health impact (one use):	6.7E-06 DALYs	1.19E-06 per DALYs use/sterilization	only (Tübingen University Hospital (UKT)).	ecological criteria faire trading conditions geographical criteria	3, growing relevance 0 0	UKT.

Conclusion: Electricity required for refurbishment and use are identified as crucial parameters of the CO₂ footprint and health impact of fURS. Ecological criteria are gaining importance for purchase decisions of fURS. More comprehensive LCA for the human and *Planetary Health* impact of reuse and single-use fURS is planned based on these data. This study may act as a basis for similar analyses and provide research in the field of climate change and health with stronger evidence.

References: (1) DAVIS, N. F., MCGRATH, S., QUINLAN, M., JACK, G., LAWRENTSCHUK, N. & BOLTON, D. M. 2018. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes. *J Endourol*, 32, 214-217. (2) https://www.who.int/data/gho/indicator-metadata-registry/imr-details/158